
MutationGate

Background
Motivation
Considering inline hook is a major detection utilized by EDR products, bypassing them is an
interesting topic to me. Regarding bypassing inline hook placed by EDR, there are already quite a
few approaches available. Although some of the earlier approaches have decent detection rules,
there are also a few mature approaches in existence. Nonetheless, I think it would be very fun to
discover a new approach to bypass hook, hopefully, it can bring some improvements or
advantages.

Inline Hook
EDR products like placing inline hooks at NTAPIs that are usually leveraged in malware, like
NtAllocateVirtualMemory, NtUnmapViewOfSection, NtWriteVirtualMemory, etc. Because
an NTAPI is a bridge between user space and kernel space.

image.pngImage not found or type unknown

For instance, NtAllocateVirtualMemory is the NTAPI version of VirtualAlloc. By placing an
unconditional jump instruction at the NTAPI, no matter whether the program calls Win32 API or

https://winslow1984.com/uploads/images/gallery/2024-02/dalle-2024-02-28-14-15-50-envision-a-world-where-cybersecurity-battles-rage-in-the-digital-ether-mutationgate-emerges-as-a-legendary-weapon-against-malware-visualized-as-an.webp
https://raven-medicine.com/uploads/images/gallery/2024-02/sW55SOcJVMINHnjz-image.png

NTAPI, the EDR is able to inspect the call and infer the intention further.

image.pngImage not found or type unknown

The following screenshots show what a hooked NTAPI looks like:

image.pngImage not found or type unknown

image.pngImage not found or type unknown

image.pngImage not found or type unknown

image.pngImage not found or type unknown

And if an NTAPI is not hooked, we can notice a very consistent pattern, which is how a syscall stub
looks like:

image.pngImage not found or type unknown

While EDR has multiple layers of detection, inline hook is a major one.

Hardware Breakpoint
In my article Bypass Amsi On Windows 11(https://medium.com/@gustavshen/bypass-amsi-on-
windows-11-75d231b2cac6), I discovered that as long as R8 is 0 when calling AmsiScanBuffer,
AMSI can be bypassed. However, I said it was not easy to utilize this bypass without WinDBG.

image.pngImage not found or type unknown

Actually, it is possible, by utilizing hardware breakpoint. This article(
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/) explains how to use
hardware breakpoint to achieve patchless AMSI bypass. It works by setting RAX as 0, modifying
AMSI scan result argument, and setting RIP as the return address when the execution is transferred
to the AmsiScanBuffer function. So in our case, we just need to set R8 as 0.

I will not cover much background knowledge about hardware breakpoint and VEH here, as you can
refer to the article, and the general idea is more important.

Some of the Existing Approaches

https://raven-medicine.com/uploads/images/gallery/2024-02/rvLNi7QyAQUz7ykT-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/mRI0XQ7pvFwFXOAX-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/dByIhbhSGbSxSD96-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/ETyCXIoLGAtrbBhC-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/q27AfVZgxY7wP4m9-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/Ifwf3tS9BV9soSZ0-image.png
https://medium.com/@gustavshen/bypass-amsi-on-windows-11-75d231b2cac6
https://medium.com/@gustavshen/bypass-amsi-on-windows-11-75d231b2cac6
https://raven-medicine.com/uploads/images/gallery/2024-02/8fwziFP04ZH37nY8-image.png
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/

The following approaches can be used to bypass inline hook, however, each also has its IOCs.
Considering there are already a lot of articles talking about them in detail, so let's briefly go
through some of the approaches that can bypass inline hook.

Direct Syscall
Each Nt version of Win32 API, such as NtAllocateVirtualMemory only requires 4 instructions to work,
the set of instructions is called syscall stub. The only difference between various NTAPI is the value
of their syscall number.

image.pngImage not found or type unknown

image.pngImage not found or type unknown

In a .asm file, define the syscall stub for NtAllocateVirtualMemory

Inside a header or c/cpp file, use EXTERN_C macro to link the function definition with the syscall
stub assembly code, the name should be consistent.

mov r10, rcx
mov rax, [SSN]
syscall
ret

.code

<...Other Stubs...>

NtAllocateVirtualMemory PROC
 mov r10, rcx
 mov eax, 18h
 syscall
 ret
NtAllocateVirtualMemory ENDP

<...Other Stubs...>

end

EXTERN_C NTSTATUS NtAllocateVirtualMemory(
	IN HANDLE ProcessHandle,
	IN OUT PVOID * BaseAddress,
	IN ULONG ZeroBits,

https://raven-medicine.com/uploads/images/gallery/2024-02/3FMWMaViAW8ZRzyg-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/KVZyn2ey7lAOeLh1-image.png

In this way, we can directly initiate the syscall by calling the define function. However, this
approach has suspicious IOCs:

Hardcoded syscall stub could be detected, the pattern is 4c8bd1 c7c0<DWORD> 0f05c3. A
possible Yara rule to detect direct syscall is as follows:

image.pngImage not found or type unknown

Though it is trivial to bypass the pattern by inserting some NOP-like instructions.

This approach has a downside, we hardcode the syscall number in the source code. It does not
work well when the target organization has multiple versions of operating system, because SSNs
vary on different OS versions.

Syswhisper suite resolves this issue: Syswhisper 1 detects the host's OS version and selects the
correct SSN. Syswhisper 2 dynamically retrieves the SSN in run-time. Anyway, direct syscall is used
by these approaches.

Without custom modification to Syswhisper2's syscall stub, a possible Yara rule to detect is as
follows:

	IN OUT PSIZE_T RegionSize,
	IN ULONG AllocationType,
	IN ULONG Protect);

rule direct_syscall
{
 meta:
 description = "Hunt for direct syscall"

 strings:
 $s1 = {4c 8b d1 48 c7 c0 ?? ?? ?? ?? 0f 05 c3}
 $s2 = {4C 8b d1 b8 ?? ?? ?? ?? 0F 05 C3}
 condition:
 #s1 >=1 or #s2 >=1
}

rule syswhisper2
{
 meta:
 description = "Hunt for syswhisper2 generated asm code"

 strings:

https://raven-medicine.com/uploads/images/gallery/2024-02/kNQYCOYaBDpTzP5c-image.png

image.pngImage not found or type unknown

Apart from the byte sequences pattern of a syscall stub, executing syscall instruction is abnormal
in a legitimate program, i.e. the syscall should be initiated inside ntdll.dll's memory region. For
instance, when calling Win32 API SleepEx in a C program, we can notice the call stack as follows:
sleep!main -> kernelbase!SleepEx -> ntdll!NtDelayExecution -
>ntoskrnl!KeDelayExecutionThread.

image.pngImage not found or type unknown

However, if we initiate the syscall directly, the call stack is as follows: sleep!main ->
sleep!NtDelayExecution ->ntoskrnl!KeDelayExecutionThread.

image.pngImage not found or type unknown

It is easy to find out that the syscall instruction is initiated in the program instead of the ntdll
module.

image.pngImage not found or type unknown

Indirect Syscall
We discussed the downside of direct syscall, so we want to avoid executing syscall directly, indirect
syscall is an improvement. The syscall stub's pattern is very similar to the one in direct syscall,
however, instead of directly executing the syscall instruction, indirect syscall stub uses an
unconditional jump to transfer the execution to the address of a syscall instruction.

Of course, we need to fetch a valid address for a syscall instruction. Assuming an NTAPI is
unhooked, we can get the syscall number at the offset of 0x4 of the function, and the instruction of
syscall is at 0x12.

 $s1 = {58 48 89 4C 24 08 48 89 54 24 10 4C 89 44 24 18 4C 89 4C 24 20 48 83 EC 28 8B 0D ?? ?? 00 00
E8 ?? ?? ?? ?? 48 83 C4 28 48 8B 4C 24 08 48 8B 54 24 10 4C 8B 44 24 18 4C 8B 4C 24 20 4C 8B D1 0F 05 C3}
 condition:
 #s1 >=1
}

NtAllocateVirtualMemory PROC
 mov r10, rcx
 mov eax, (ssn of NtAllocateVirtualMemory)
 jmp (address of a syscall instruction)
 ret
NtAllocateVirtualMemory ENDP

https://raven-medicine.com/uploads/images/gallery/2024-02/M2TMACtiBVclmSw4-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/BSHlq8DslQZeWSI4-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/D5Lx13cXzzbe4XtJ-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/FW7XyOJ7RyfP7HuN-image.png

image.pngImage not found or type unknown

However, this brings us to the "chicken or the egg" problem. If an NTAPI is hooked, then its syscall
stub will not match the syscall stub pattern, and naturally, we cannot successfully extract the SSN
and the address of the syscall instruction. Fortunately, considering that syscall is a special type of
call instruction that does not directly specify the address to jump to but rather determines the
transferred address in kernel space based on the SSN, all we need to do is specify the correct SSN
and corresponding function arguments.

Therefore, we do not have to get the address of the syscall instruction in NtAllocateVirtualMemory
function. We can select an unhooked NTAPI, the one that is not typically leveraged in malware,
such as NtDrawText.

image.pngImage not found or type unknown

Though indirect syscall improved evasion, security products could still detect them based on some
IOCs:

If using Syswhisper3 without custom modification, though fewer hardcoded bytes of the syscall
stub, it is still possible to find a byte sequence pattern: 4c8bd1 41ff<DWORD> c3

A possible Yara rule to detect is as follows:

image.pngImage not found or type unknown

Besides, though the call stack looks more legitimate, a detection rule can rely on the fact that the
return address resides in NtDrawText function, while the executed syscall is
ntoskrnl!NtAllocateVirtualMemory.

rule syswhisper3
{
 meta:
 description = "Hunt for syswhispe3 generated asm code"

 strings:
 $s1 = {48 89 4c 24 08 48 89 54 24 10 4c 89 44 24 18 4c 89 4c 24 20 48 83 ec 28 b9 ?? ?? ?? ?? e8}
 $s2 = {48 83 c4 28 48 8b 4c 24 08 48 8b 54 24 10 4c 8b 44 24 18 4c 8b 4c 24 20 4c 8b d1}
 condition:
 #s1 >=1 or #s2 >=1
}

https://raven-medicine.com/uploads/images/gallery/2024-02/L6E7MA47qNOKCk9E-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/AjA4OlWeMtPovR6C-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/h4QYLLrp7mQnu42K-image.png

Overwrite the text section of loaded NTDLL
EDR hooks some NTAPI by overwriting the codes, the changes happen in the .text section of the
ntdll module. Therefore, to recover hooked functions, we can overwrite the .text section of loaded
ntdll.

To achieve it, there are multiple steps:

1. Read a fresh copy of ntdll. We can read it from disk, over the Internet, from KnownDLL
directory, etc.

2. Change the page permission from RX to RWX, as the .text section is not writable by
default, though we can also use WriteProcessMemory or its NTAPI to overwrite hooked
code.

3. Copy the .text section from the fresh copy to the loaded module's
4. Revert the page permission.

However, there are some IOCs regarding this approach:

1. EDR could find that the hook is tamped by checking the integrity of the loaded NTDLL
module.

2. We use hooked functions to perform the above actions, which could trigger alerts.
3. A memory region that has RWX permission is a serious red flag.

Overwrite hooked functions
Instead of overwriting the whole .text section, we can choose to overwrite needed functions, just
like patching AmsiScanBuffer. While less modification to the loaded ntdll module, IOCs of
overwriting the text section of NTDLL still apply to this approach.

There are still some other approaches to bypass inline hook, but I will not go through all of them,
this article(https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-
system-calls-for-red-teams/) did a great job in explaining common approaches.

MutationGate
MutationGate is a variant of indirect syscall, it is a new approach to bypass EDR's inline hook by
utilizing hardware breakpoint to redirect the syscall. MutationGate works by calling an unhooked
NTAPI and replacing the unhooked NTAPI's SSN with hooked NTAPI's. In this way, the syscall is

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/

redirected to the hooked NTAPI's, and the inline hook can be bypassed without loading the 2nd
ntdll module or modifying bytes within the loaded ntdll's memory space. The GitHub repository is
https://github.com/senzee1984/MutationGate

As we discussed before, EDR tends to set inline hooks for various NTAPI, especially those that are
usually leveraged in malware, such as NtAllocVirtualMemory. While other NTAPI that are not usually
leveraged in malware tend not to have inline hooks, such as NtDrawText. It is very unlikely that an
EDR set inline hook for all NTAPI.

Assume NTAPI NtDrawText is not hooked, while NTAPI NtQueryInformationProcess is hooked, the
steps are as follows:

1. Get the address of NtDrawText. It can be achieved by utilizing GetModuleHandle and
GetProcAddress combination, or a custom implementation of them via PEB walking.

2. Prepare arguments for NtQueryInformationProcess
3. Set a hardware breakpoint at NtDrawText+0x8, when the execution reaches this

address, the SSN of NtDrawText is saved in RAX, but the syscall is not initiated yet.

4. Retrieve the SSN of NtQueryInformationProcess. Inside the exception handler, update
RAX with NtQueryInformationProcess' SSN. I.e., the original SSN was replaced.

 pNTDT = GetFuncByHash(ntdll, 0xA1920265);	//NtDrawText hash
 pNTDTOffset_8 = (PVOID)((BYTE*)pNTDT + 0x8);	//Offset 0x8 from NtDrawText

0:000> u 0x00007FFBAD00EB68-8
ntdll!NtDrawText:
00007ffb`ad00eb60 4c8bd1 mov r10,rcx
00007ffb`ad00eb63 b8dd000000 mov eax,0DDh
00007ffb`ad00eb68 f604250803fe7f01 test byte ptr [SharedUserData+0x308 (00000000`7ffe0308)],1
00007ffb`ad00eb70 7503 jne ntdll!NtDrawText+0x15 (00007ffb`ad00eb75)
00007ffb`ad00eb72 0f05 syscall
00007ffb`ad00eb74 c3 ret
00007ffb`ad00eb75 cd2e int 2Eh
00007ffb`ad00eb77 c3 ret

...<SNIP>...
uint32_t GetSSNByHash(PVOID pe, uint32_t Hash)
{
	PBYTE pBase = (PBYTE)pe;

https://github.com/senzee1984/MutationGate

5. Since we called NtDrawText but with NtQueryInformationProcess' arguments, the call
should be failed. However, since we changed the SSN, the syscall is successful.

	PIMAGE_DOS_HEADER	pImgDosHdr = (PIMAGE_DOS_HEADER)pBase;
	PIMAGE_NT_HEADERS	pImgNtHdrs = (PIMAGE_NT_HEADERS)(pBase + pImgDosHdr->e_lfanew);
	IMAGE_OPTIONAL_HEADER	ImgOptHdr = pImgNtHdrs->OptionalHeader;
	DWORD exportdirectory_foa = RvaToFileOffset(pImgNtHdrs,
ImgOptHdr.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
	PIMAGE_EXPORT_DIRECTORY pImgExportDir = (PIMAGE_EXPORT_DIRECTORY)(pBase + exportdirectory_foa);	
//Calculate corresponding offset
	PDWORD FunctionNameArray = (PDWORD)(pBase + RvaToFileOffset(pImgNtHdrs, pImgExportDir-
>AddressOfNames));
	PDWORD FunctionAddressArray = (PDWORD)(pBase + RvaToFileOffset(pImgNtHdrs, pImgExportDir-
>AddressOfFunctions));
	PWORD FunctionOrdinalArray = (PWORD)(pBase + RvaToFileOffset(pImgNtHdrs, pImgExportDir-
>AddressOfNameOrdinals));

	for (DWORD i = 0; i < pImgExportDir->NumberOfFunctions; i++)
	{
		CHAR* pFunctionName = (CHAR*)(pBase + RvaToFileOffset(pImgNtHdrs, FunctionNameArray[i]));
		DWORD Function_RVA = FunctionAddressArray[FunctionOrdinalArray[i]];
		if (Hash == ROR13Hash(pFunctionName))
		{
			void *ptr = malloc(10);
			if (ptr == NULL) {
				perror("malloc failed");
				return -1;
			}
			unsigned char byteAtOffset5 = *((unsigned char*)(pBase + RvaToFileOffset(pImgNtHdrs, Function_RVA)) + 4);
			//printf("Syscall number of function %s is: 0x%x\n", pFunctionName,byteAtOffset5);	//0x18
			free(ptr);
			return byteAtOffset5;
		}
	}
	return 0x0;
}
...<SNIP>...

In this example, NtDrawtext's SSN is 0xdd, NtQueryInformationProcess' SSN is 0x19, the address of
NtDrawText is 0x00007FFBAD00EB60

The call is made to NtDrawText's address but with NtQueryInformationProcess arguments. Since
the SSN is changed from 0xdd to 0x19, the syscall is successful.

image.pngImage not found or type unknown

Let's modify the code and play with NtDelayExecution again, considering it is easier for us to
observe the call stack. As expected, these Yara rules we used before cannot detect any byte
sequence pattern.

image.pngImage not found or type unknown

Inspect the call stack, the syscall is initiated from the ntdll memory space, it looks legitimate
regarding this aspect. However, KeDelayExecutionThread expects NtDelayExecution as the
corresponding NTAPI, not NtDrawText. This clue could be used as a detection rule.

image.pngImage not found or type unknown

Advantages and Detection
MutationGate has its advantages, while it is possible to detect it. If you can think of any other
advantages and detections, please let me know :)

Advantages

1. Do not load the 2nd ntdll module
2. No modification to the loaded ntdll module
3. No custom syscall stub and byte sequence pattern
4. syscall is initiated in the ntdll module, which looks legitimate

Possible Detections

1. The AddVectoredExceptionHandler call could look suspicious in a normal program
2. The function in ntoskrnl.exe is not consistent with the one in the ntdll module
3. Initiated syscall in a benign NTAPI does not expect a different NTAPI's SSN

Comparison with Other Similar Approaches

 fnNtQueryInformationProcess pNTQIP = (fnNtQueryInformationProcess)pNTDT;
 NTSTATUS status = pNTQIP(pi.hProcess, ProcessBasicInformation, &pbi, sizeof(PROCESS_BASIC_INFORMATION),
NULL);	

https://raven-medicine.com/uploads/images/gallery/2024-02/5y8j7O8rHhktXEDR-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/oF1n8qQ6sfZRC4kt-image.png
https://raven-medicine.com/uploads/images/gallery/2024-02/SCwvPAqEFUvmpGPG-image.png

HWSyscall(https://github.com/Dec0ne/HWSyscalls) and TamperingSyscall(
https://github.com/rad9800/TamperingSyscalls) both ingeniously utilize hardware breakpoints to
bypass inline hooks, and they are both excellent approaches. Even though I had not read and
referenced these 2 projects during the period when I was inspired by and released MutationGate
(after I released MutationGate, a friend sent me the links to these 2 projects), there indeed are
some similar techniques or general ideas. I have carefully read and researched them, and I have
summarized and compared them in a table format, as shown below.

Approach Call Arguments SSN Syscall

MutationGate Benign NTAPI Intended NTAPI's Benign NTAPI's SSN -
> Intended NTAPI's
SSN

In the benign NTAPI

HWSyscall Intended NTAPI Intended NTAPI's Intended NTAPI's SSN
after retrieving it

In the closest
unhooked NTAPI

TamperingSyscall Intended NTAPI Dummy arguments -
> Intended NTAPI's

Intended NTAPI's SSN
after passing EDR's
check

In the intended NTAPI

Indirect Syscall Custom ASM function Intended NTAPI's Intended NTAPI's SSN
after retrieving it

In any unhooked
NTAPI

Credits and References
During the period after I was inspired, implemented, and released MutationGate, the following
resources were very helpful to me, and I am thankful to the authors.

https://github.com/senzee1984/MutationGate

https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/

https://github.com/jthuraisamy/SysWhispers2

https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-
calls-for-red-teams/

https://github.com/Dec0ne/HWSyscalls
https://github.com/rad9800/TamperingSyscalls
https://github.com/senzee1984/MutationGate
https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
https://github.com/jthuraisamy/SysWhispers2
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/

https://thewover.github.io/Dynamic-Invoke/

https://cyberwarfare.live/bypassing-av-edr-hooks-via-vectored-syscall-poc/

https://redops.at/en/blog/syscalls-via-vectored-exception-handling

https://gist.github.com/CCob/fe3b63d80890fafeca982f76c8a3efdf

https://malwaretech.com/2023/12/silly-edr-bypasses-and-where-to-find-them.html

https://github.com/Dec0ne/HWSyscalls

https://github.com/rad9800/TamperingSyscalls

https://github.com/RedTeamOperations/VEH-PoC

Maldev Course

ZeroPoint Security RTO II Course

Revision #10
Created 28 February 2024 18:31:24 by winslow
Updated 23 March 2024 22:30:27 by winslow

https://thewover.github.io/Dynamic-Invoke/
https://cyberwarfare.live/bypassing-av-edr-hooks-via-vectored-syscall-poc/
https://redops.at/en/blog/syscalls-via-vectored-exception-handling
https://gist.github.com/CCob/fe3b63d80890fafeca982f76c8a3efdf
https://malwaretech.com/2023/12/silly-edr-bypasses-and-where-to-find-them.html
https://github.com/Dec0ne/HWSyscalls
https://github.com/rad9800/TamperingSyscalls
https://github.com/RedTeamOperations/VEH-PoC

